ELECTRICON

map-it

__CCU

ELECTRICON's patented technology provides breakthrough solution for smaller-scale (<100 kt/yr) point sources, maritime CO₂ capture, and others. The process consists of our "Electrolyzer with benefits" producing O2, H2, acid, and base. The base is pumped to a point source where scrubbing of CO₂ occurs, forming bicarbonates, without requiring prior gas cleaning. The resulting bicarbonate stream is brought in a vessel, which, after closing off, is supplied with the electrolyzer's acid. The release of CO₂ is instant, leading to a more than 95% recovery of CO₂ gas at a pressure of 35 bars without a compressor. Compression on a small scale represents up to 40% of capture costs¹, making this a major advantage. After release, the electrolyte can be cleaned if needed, after which it goes

Electricon

back to the electrolyzer. ELECTRICON thus (i) avoids gas pipelines (ii) limits the installation at the point source to scrubbing (iii) avoids pressurization which entails high costs at smaller sites, both in terms of CAPEX and OPEX (iv) creates pure CO_2 gas (v) avoids risks to electrolyzer by impure carbonate streams and (vi) creates H_2 , O_2 and heat as other products that can be monetized.

TECHNICAL ASPECTS (all % are volume-based)

Point sources: All sources. CO₂ concentration: > 400 ppm

The input CO_2 concentration goes from the atmospheric to the highly concentrated range due to the use of caustic scrubbing.

CO₂ capture efficiency: > 95%

CO₂ purity: > 95%

Min. feed gas pressure: 1.5 bar Max. feed gas temperature: ±80°C Typical scale: Small (<100 ktCO₂/yr)

Disclosed markets: point sources and maritime.

Primary energy source: Electricity

Impurity tolerance: Highly tolerant to impurities as a treatment post-recovery of electrolytes. SOx and NOx are beneficial impurities.

FUNCTION IN CCU VALUE CHAIN

- Capture of CO₂ from sources where amine scrubbing is not attractive, with classic caustic scrubbing.
- Pressurized, pure CO₂ delivered for CCS or CCU with formed H₂.
- No purification is needed before scrubbing.

LIMITATIONS

- Insufficient H₂ production for full CO₂ conversion to products.
- Not suited at present for a very large scale (Mton).
- Early-stage development.

ENERGY

 Only electricity input for the capture and regeneration process, to drive the electrolyzer and scrubber.

CONSUMABLES

- Water as per H₂ produced.
- Salts for electrolytes in case a purge is needed.
- Reagents for purification on site (e.g., oxidants).

Energy and Consumables

Parameter	Value (range)
Water (t/tH ₂)	9*
Electricity (kWh/tCO ₂)	670**

^{*}Water required for H₂ production.

COSTS

CAPEX: ± 510 €/tCO₂/yr*

Main CAPEX: Electrolyzer.

OPEX: < 100 €/tCO₂**

Main OPEX: electricity.

CO₂ capture cost: Variable.

Depends on the scale and the electricity price.

*At a small scale, even lower at 100 kt scale, but this is to be further developed.

**OPEX cannot be considered on a pure CO₂ basis, the system consumes 32 GWh to capture 15 ktCO₂, produce 430

^{**}Electricity for the electrolyzer CO_2 component, Electricity for the scrubber depends on the stream, No electricity is needed for regeneration.

tonnes of H₂, produce heat that can save another 1 kt-CO₂, produce oxygen, and it avoids pressurization costs and the need for gas purification. At a present 110 €/MWh industrial electricity price, one could state the OPEX at less than 100 €/tCO₂, including the pressurization to 35 bar.

CO₂ avoidance cost: Not available

ENVIRONMENTAL

CO₂ footprint: Not available.

This cannot be stated as the number is just linear with the footprint of electricity needed. It would be too simple to just rely on solar or wind as the source and report a negligible footprint.

Spatial footprint: Standard electrolyzer size (±500 m² per MW installed capacity) + scrubber (±200 m² for 10 kt p.a. spoke).

Environmental issues: Not available.

ENGINEERING

Maturity: Individual (TRL 6-9); Combination (TRL 4)

Time to market: 2-3 years. **Retrofittability:** Feasible

Easily retrofittable to current scrubbers.

Scalability: High

Scalable as H₂ electrolyzers.

Process type: Liquid solvent-based with chemical

Deployment model: Centralized or Decentralized.

Decentralized CO₂ absorption at point sources with

centralized desorption.

Technology flexibility: Hybridization with other

capture technologies is feasible.

TECHNOLOGY PROVIDERS

ELECTRICON

MISSING INFORMATION

All technologies should be benchmarked at realistic energy prices and full costs (including compression). The costs for CO₂ capture are estimated to increase power production costs from €204 to €609 per MWh due to the impact of compression, where compressors require >40% of OPEX.1 Technology is novel, hence information is needed on the impact of impurities and the optimal business model. Current competitors assume optimistically that they will get electrical or other energy below 100 €/MWh, which skews the business case.

BENCHMARK or ALTERNATE PROCESS

- Electrochemical DAC by Mission Zero.
- ICO₂CH system by VITO.

Electrochemical DOC system SeaO₂.

CONTACT INFO

Mohammed Khan (mohammednazeer.khan@vito.be) Miet Van Dael (miet.vandael@vito.be) Steven Peleman (steven@triplehelixgroup.com)

ACKNOWLEDGEMENT

This infosheet was prepared as part of the MAP-IT CCU project funded by VLAIO (grant no. HBC.2023.0544).

REFERENCES

1. Wilkes MD, Ejeh J, Roberts D, Brown S. Cost of small-scale dispatchable CO2 capture: Techno-economic comparison and case study evaluation. Int J Greenh Gas Control. 2023;127:103931.

PARTNERS

DISCLAIMER

Notwithstanding that this infosheet has been prepared by the developers with the utmost care, using reliable sources, this infosheet is provided on an "AS IS" and "AS AVAILABLE" basis. The developers make no warranties of any kind, express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose or non-infringement of intellectual property rights, with respect to this infosheet. The developers do not accept any responsibility or liability for the use of this infosheet. Use of this infosheet is at the user's own risk. The developers of the infosheet are not responsible for any errors, inaccuracies, or misinterpretations of the information contained herein.