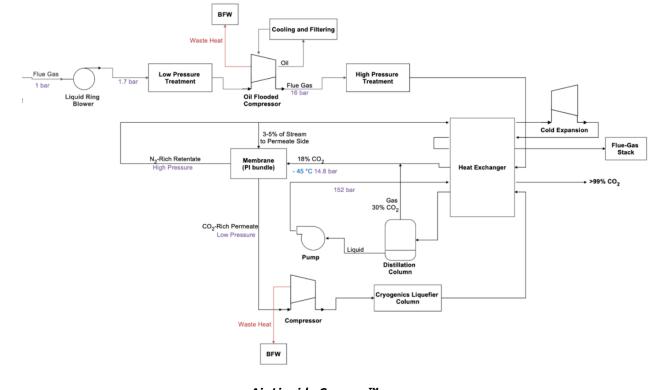

CRYOGENIC CARBON CAPTURE


co **2** map-it

Carbon Capture using cryogenic method is a post-combustion technology designed reduce carbon emissions from various industrial sources. There are several different configurations of the cryogenic carbon capture process. One notable process cools the gases to very low temperatures, specifically to the frost or desublimation point of CO2 (between -100°C and -135°C), to separate CO2 as a solid, as shown in the figure on the right.1 In this process, the CO₂ is first separated from other gases and then pressurized. The solid CO2 is then warmed to produce a high-purity, pressurized CO₂stream. In another configuration, the CO₂-containing stream is first compressed and then directed to a cold process. In this stage, CO2 is separated from other components of the feed gas and purified through partial condensation and distillation as

Cryogenic carbon capture process

shown in the figure below.² Some of the impurities removed during the cryogenic process are recycled back to the plant's inlet. The final CO₂ product is either compressed to the desired pressure (resulting in a gaseous or supercritical state) or recondensed and extracted as a liquid. This technology offers several benefits, including high CO₂ recovery rates of up to 99%, CO₂ purity levels exceeding 99%, and lower energy consumption compared to other carbon capture technologies. Additionally, it can remove other pollutants such as SOx, NOx, and mercury from flue gases. It applies to lower CO₂ concentration point sources, as it can be integrated with other capture systems to increase CO₂ concentration. However, the initial investment and operational costs can be high, although it aims to be more cost-effective than competing technologies. The information shown in this info sheet belongs mainly to the CRYOCAPTM technology from Air Liquide, as it is publicly available.³

TECHNICAL ASPECTS (all % are volume-based)

Point Sources: Steam-methane reforming, cement/lime, steel blast furnace, refineries, waste incineration/biomass power plant, pulp & paper, and iron and Steel.⁴

CO₂ concentration range: 15-95%⁴ CO₂ capture efficiency: 99%⁴

CO₂ purity: 95%³ (CO₂ pipeline standards)

Min. feed gas pressure: 1 bar² (typical), 4 bar for

Cryocap™ FG⁵

Max. feed gas temperature: 30 °C

Typical scale: Medium-large (> 100.000 tCO₂/yr)⁶

Primary energy source: Electricity⁴

Impurity tolerance: High tolerance to common flue gas

impurities, such as SOx and NOx. 6

FUNCTION IN CCU VALUE CHAIN

• Capture high-purity CO₂ in liquid form.

 Removes impurities, eliminating the need for separate pretreatment steps (NOx and SOx).

LIMITATIONS

- High energy demand due to cryogenic cooling and compression.
- Capital-intensive equipment, such as refrigeration systems and heat exchangers.
- Pretreatment requirements for water and PM.

ENERGY

- Electricity is the main energy source.
- Cooling the flue gas is the most energy-intensive step.
- Integrated heat recovery enhances overall energy efficiency.

CONSUMABLES

 Refrigerants are used in a closed-loop system, minimizing loss.

Energy and Consumables

Parameter	Value
Electricity (kWh/tCO ₂)	FG: 410 ⁵ ; H₂: 320 ⁶ *
Equation**	Y= 660exp(-1.868X) ⁷
	667 – 1444 ⁸
	248 ⁹ ***

^{*}Cryocap™ FG and H_2

COSTS

CAPEX: 28 - 31 €/tCO₂^{10,11}

15 €/tCO₂9

Main CAPEX: Cold box and compressors.

OPEX: 15 - 30 €/tCO₂¹¹

8 €/tCO₂9

Main OPEX: Electricity

CO₂ capture cost: 47 – 110 €/tCO₂⁸ (2021 euros)

Cryocap[™] H₂: 30 – 50 €/tCO₂^{4*}

40 €/tCO₂¹¹ for 50% CO₂

Cryocap[™] FG: 40 – 80 €/tCO₂⁴*

48 €/tCO₂⁵ for 22% CO₂

Cryocap[™] STEEL: 25 – 60 €/tCO₂⁴*

Cryocap™ OXY: 30 – 50 €/tCO₂4*

Cryogenic carbon capture: 23 €/tCO₂9

 \textbf{CO}_2 avoidance cost: CryocapTM H_2 : avoided CO_2 cost

reduction up to 40% compared to MDEA.4

Cryogenic carbon capture: 34 €/tCO₂⁹

*Ranges vary depending on CO_2 concentration and the scale of operation.

^{10,11}Air Liquide's Port-Jérôme; capacity - 100 ktCO₂/yr; Cryocap™ H₂; 2014 euros; CAPEX estimation with 30 yr lifetime; discount rate – 7%; electricity price - 60 €/MWh; supercritical CO₂ product at 150 bar.

⁹Cryogenic carbon capture; 2021 euros; capture efficiency – 90%; delivery pressure – 150 bar; electricity price – 74 €/MWh; avoidance cost includes transport and storage cost; NG as refrigerant.

ENVIRONMENTAL

CO₂ footprint: 230 kgCO₂eq/ton CO₂^{12,13}

Spatial footprint: ~20,000 m² per 0.9 MtCO₂/yr^{7*}

*Based on capture volume of 900 ktCO₂/yr and 5 acres area.

Environmental issues: None, no by-product formation,

ENGINEERING

Maturity: FOAK Commercial system (TRL 8-9)⁴

solvent-free, no toxic or flammable gases used.

Pilot plants and first commercial plants.

Retrofittability: Moderate^{4,11}

This technology has a compact and flexible footprint to be retrofitted into existing industrial plants, contributing to a cost-effective solution.

Scalability: High

Well suited for a wide range of applications, allowing it to be adapted to different industrial settings due to its modularity.⁴

Process type: Cryogenic without solvents/sorbents and chemical reactions.

^{**}Cryocap^M: $X - CO_2$ concentration and Y - electricity consumption

^{***}Cryogenic carbon capture – gas to solid

Deployment model: Only centralized. CO₂ separation occurs only in the cold box.

Technology flexibility: Hybridizing with other CO₂ capture technologies, such as PSA or membranes, is feasible. These technologies can be used to increase the CO₂ concentration at the upstream.

TECHNOLOGY PROVIDERS

- CryocapTM by **Air Liquide**, France
 - **CryocapTM** H_2 : Capturing CO_2 while boosting H_2 production via steam-methane reforming (SMR)
 - **CryocapTM FG**: Capturing CO_2 from flue gases (cement plant), >=15% CO_2 content
 - **Cryocap**TM **STEEL**: Capturing CO_2 while boosting efficiency (steel plant), 20-50% CO_2 content
 - **Cryocap[™] OXY**: Capture and purification of Oxycombustion (NG/coal/biomass waste), >40% CO₂ content
- <u>Cryogenic Carbon Capture™</u> by **Chart Industries**,
 United States
- <u>Cryogenic capture</u> by **Emicap**, Belgium
- <u>FrostCC™</u> by **Carbon America**, United States

INNOVATIONS

Emicap (Belgium) developed a technology also suitable for small-scale capture (<100 ktCO₂/yr).

CONTACT INFO

Mohammed Khan (mohammednazeer.khan@vito.be) Miet Van Dael (miet.vandael@vito.be)

ACKNOWLEDGEMENT

This infosheet was prepared as part of the MAP-IT CCU project funded by VLAIO (grant no. HBC.2023.0544).

REFERENCES

- Baxter L, Hoeger C, Stitt K, Burt S, Baxter A. Cryogenic Carbon Capture™ (CCC) Status Report. In: International Conference on Greenhouse Gas Control Technologies, GHGT-15. SSRN; 2021. Accessed February 20, 2025. https://ssrn.com/abstract=3819906
- 2. Spilman H. Overview of the CRYOCAP Studies.; 2015.
- Air Liquide. CRYOCAP Carbon Capture Technologies. Published online 2021. efaidnbmnnnibpcajpcglclefindmkaj/https://impactclimate.mit. edu/wpcontent/uploads/2022/08/CRYOCAPTechnicalSummary_Hann ahSpilman.pdf
- anspilman.pdf

 4. Barlow H, Shahi SSM. State of the Art: CCS Technologies 2024.;
- Rodrigues G, Raventos M, Dubettier R, Ruban S. Adsorption assisted cryogenic carbon capture: an alternate path to steam driven technologies to decrease cost and carbon footprint. 15th Greenh Gas Control Technol Conf 2021, GHGT 2021. 2021;(May).
- Leclerc M, Rodrigues G, Dubettier R, Ruban S. Optimized configuration to reduce H2 carbon footprint in a refinery. 15th Greenh Gas Control Technol Conf 2021, GHGT 2021. 2021;(March).

- NETL. Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer Using CryocapTM FG Process.; 2024.
- Font-Palma C, Cann D, Udemu C. Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. C. 2021;7(3):58.
- Hoeger C, Burt S, Baxter L. Cryogenic Carbon Capture[™]
 Technoeconomic Analysis. In: International Conference on
 Greenhouse Gas Control Technologies, GHGT-15. SSRN
 Electronic Journal; 2021:1-11.
- 10. Air Liquide. World premiere: Air Liquide inaugurates its CO₂ cold capture system, Cryocap[™]. November 5, 2015. Accessed February 20, 2025. https://www.airliquide.com/group/press-releases-news/2015-11-05/world-premiere-air-liquide-inaugurates-its-co2-cold-capture-system-cryocaptm
- Terrien P, Lockwood F, Granados L, Morel T. CO2 capture from H2 plants: Implementation for EOR. *Energy Procedia*. 2014;63:7861-7866.
- Cuéllar-Franca RM, Azapagic A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J CO2 Util. 2015;9:82-102
- 13. Khoo HH, Tan RBH. Life cycle investigation of CO2 recovery and sequestration. *Environ Sci Technol*. 2006;40(12):4016-4024.

PARTNERS

Universiteit

Antwerpen

DISCLAIMER

Notwithstanding that this infosheet has been prepared by the developers with the utmost care, using reliable sources, this infosheet is provided on an "AS IS" and "AS AVAILABLE" basis. The developers make no warranties of any kind, express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose or non-infringement of intellectual property rights, with respect to this infosheet. The developers do not accept any responsibility or liability for the use of this infosheet. Use of this infosheet is at the user's own risk. The developers of the infosheet are not responsible for any errors, inaccuracies, or misinterpretations of the information contained herein.