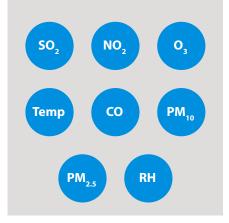
SCI - 608 – Criteria Pollutant Sensor

Sensor Based Air Quality Measurement

Description


The SCI - 608 – Criteria Pollutant Sensor is a low-cost air quality monitoring solution designed for accurate, high time resolution measurement of criteria pollutants. It utilizes state of the art sensor technology enhanced with a machine learning calibration system and a convenient cloud-based data acquisition and visualization system. The monitor has been extensively field tested, is easy to install and can provide the user with real time data within minutes of setting up.

Applications

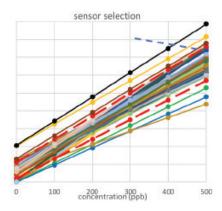
- Real Time Alternative for Samplers
- Smart Cities
- Pollution Source Identification and Locating
- Traffic Pollution Monitoring
- Industrial Fence Line Monitoring
- Emergency Monitoring
- Air Quality Model Validation
- Community Based Monitoring
- Pollution Migration Mapping

What Does It Measure?

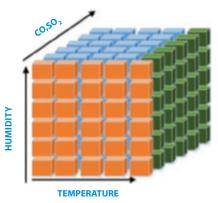
Specifications

Measurement Performance

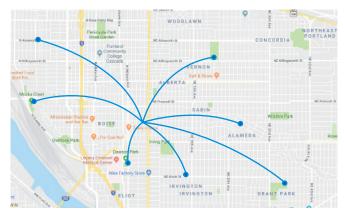
Pollutant	Detection Principle	Units	Range	Detection Limit	Resolution
SO ₂	Electrochemical Sensor	ppb	0 ~ 500	5	0.01
NO ₂		ppb	0 ~ 500	5	0.01
СО		ppm	0 ~ 50	0.05	0.01
Оз		ppb	0 ~ 500	5	0.01
PM10	Light Scattering	μg/m³	0 ~ 1000	5	1
PM2.5		μg/m³	0 ~ 1000	5	1



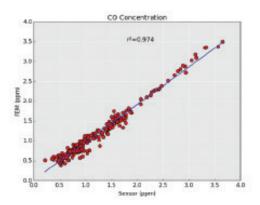
Power Supply	DC 12V, Solar		
Power Consumption	Less than 3 watts		
Operating Temperature Range	-20 to 55 °C		
Atmospheric Pressure	645 to 795 mmHg		
Relative Humidity	15 to 90%		
Communication	GPRS (2G/3G/4G), RS232		
Size	220 x 220 x 300 mm		
Weight	2.6 kg (5.75 lbs)		
Software	Cloud: For instrument and data management. Runs on secure severs accessed via web browser		
Mounting	Pole Mounting Bracket Included		

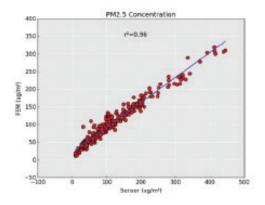

Sensor Quality Control

SCI sensor instruments have a rigorous three stage quality assurance and calibration process. In the first stage each individual sensor is challenged with standard gases to screen out low performing sensors. The second stage involves generating calibration files unique to each sensor unit using a custom machine learning algorithm and the sensor's response to complex pollutant mixtures, varying temperature and varying humidity in a controlled test chamber. Once in the field, sensors can be periodically recalibrated with neural networking algorithms to improve sensor response to complex ambient conditions. This cloud-based calibration can be done automatically during field deployment using existing reference method monitors or with mobile instruments.

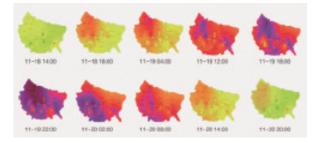

Stage 1: Sensor Selection

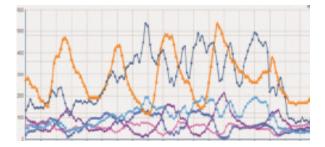
Stage 2. Sensor Instrument Factory Calibration




Stage 3. Field Calibration

Accuracy


SCI sensors have demonstrated excellent correlation with reference method sensors with corelation coefficients as follows: CO = 0.97, $NO_2 = 0.93$, $O_3 = 0.975$, $SO_2 = 0.89$, $PM_{2.5} = 0.96$, $PM_{10} = 0.8$



Data Visualization Platform

SCI sensor data is uploaded to the cloud and data can be visualized using a number of useful graphics that turn sensor data into useful information. Data can be accessed via the internet or with an app on your mobile device.

Ordering Information

To place an order or for more information about SCI sensor contact us at info@sci-cooper.com.

Sailbri Cooper Inc 10300 SW Nimbus Ave. Suite P-B Tigard, Oregon 97223 T: 503-670-8127 F: 503-624-2120 www.sci-monitoring.com