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Premature mortality related to United 
States cross-state air pollution

Irene C. Dedoussi1,2, Sebastian D. Eastham1,3, Erwan Monier3,4 & Steven R. H. Barrett1,3*

Outdoor air pollution adversely affects human health and is estimated to be 
responsible for five to ten per cent of the total annual premature mortality in the 
contiguous United States1–3. Combustion emissions from a variety of sources, such as 
power generation or road traffic, make a large contribution to harmful air pollutants 
such as ozone and fine particulate matter (PM2.5)4. Efforts to mitigate air pollution 
have focused mainly on the relationship between local emission sources and local air 
quality2. Air quality can also be affected by distant emission sources, however, 
including emissions from neighbouring federal states5,6. This cross-state exchange of 
pollution poses additional regulatory challenges. Here we quantify the exchange of 
air pollution among the contiguous United States, and assess its impact on premature 
mortality that is linked to increased human exposure to PM2.5 and ozone from seven 
emission sectors for 2005 to 2018. On average, we find that 41 to 53 per cent of air-
quality-related premature mortality resulting from a state’s emissions occurs outside 
that state. We also find variations in the cross-state contributions of different emission 
sectors and chemical species to premature mortality, and changes in these variations 
over time. Emissions from electric power generation have the greatest cross-state 
impacts as a fraction of their total impacts, whereas commercial/residential emissions 
have the smallest. However, reductions in emissions from electric power generation 
since 2005 have meant that, by 2018, cross-state premature mortality associated with 
the commercial/residential sector was twice that associated with power generation. In 
terms of the chemical species emitted, nitrogen oxides and sulfur dioxide emissions 
caused the most cross-state premature deaths in 2005, but by 2018 primary PM2.5 
emissions led to cross-state premature deaths equal to three times those associated 
with sulfur dioxide emissions. These reported shifts in emission sectors and emission 
species that contribute to premature mortality may help to guide improvements to air 
quality in the contiguous United States.

Long-term exposure to fine particulate matter (PM2.5) and ozone leads 
to an increased risk of premature death7–12. Indeed, PM2.5 and ozone 
are the most prominent known causes of early deaths associated with 
outdoor air pollution, resulting in more than 90% of total air-pollution-
related mortalities8,11. For this reason, PM2.5 and ozone have become the 
predominant pollutants for quantifying air quality2. These pollutants 
form mainly through atmospheric chemical reactions following the 
release of precursor emissions. PM2.5, which consists of particles and 
liquid droplets, forms from gaseous precursor emissions of nitrogen 
oxides (NOx), sulfur oxides (SOx), ammonia (NH3), and others. PM2.5 
can also be emitted directly, as in the case of black carbon. Ozone 
forms from gaseous precursor emissions of NOx and volatile organic 
compounds (VOCs). The adverse health impacts due to exposure to 
PM2.5 and ozone can therefore be attributed to the precursor emissions 
that lead to their formation. Such attribution is useful, as it is these 

emissions that can be directly controlled, rather than the exposure 
that results from them.

Combustion emissions constitute the largest source of anthropo-
genic emissions in the USA, and therefore contribute to the formation 
of PM2.5 and ozone2. The health impacts attributable to these emissions 
have been estimated in various studies6,13,14, with estimates varying 
between 90,000 and 360,000 early deaths per year. In the context 
of the Environmental Protection Agency (EPA) Cross-State Air Pollu-
tion Rule (CSAPR) and individual state regulation, measures to further 
reduce the health impacts of pollution would benefit from a greater 
understanding of which sectors and which states are responsible for 
the health impacts in every other state.

Prior studies have investigated parts of this problem. One study6 
estimated the sources of US PM2.5 pollution impacts on a fine scale, 
with other work focusing on the roles of individual emission sectors15 
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or species16,17 for either pollutant. Numerous other studies have focused 
on examining the roles of different emission sectors13,18 or species19,20, 
without quantifying the aspect of pollution exchange. Variations in 
time have also been discussed21. In all cases these studies have focused 
on only one or two of the dimensions of the problem (emission sector, 
emission species, pollutant and exchange), and no previous work has 
integrated these aspects together into a single study. As such, to date 
there has been no assessment of cross-state pollution exchange that 
quantifies the influence, by sector and chemical species, of each state 
on every other state’s health risk, using detailed chemistry-transport 
modelling and including both PM2.5 and ozone.

In this work, we estimate the pollution exchange between the 48 
contiguous US states, and form source–receptor relationships between 
them for combustion emissions from seven sectors: electric power 
generation; industry; commercial/residential; road transportation; 
marine; rail; and aviation. The commercial/residential sector includes 
residential combustion (for example, of biomass), nonindustrial com-
mercial and institutional processes, and waste treatment, among other 
sources. This analysis yields estimates for the number of early deaths 
due to PM2.5 (primary and secondary, excluding secondary organic 
aerosols) and ozone exposure in every state, with attribution of impacts 
to each sector and each emitted chemical species from every state. We 
estimate combustion emissions for the seven sectors for 2005 (based on 
the 2005 National Emissions Inventory (NEI)), 2011 (based on NEI2011) 
and 2018 (based on the NEI2011 forecast), and present these findings in 
Extended Data Table 1. Lists of the specific sources that are grouped in 
each sector are included in the associated data repository (see Meth-
ods). The impacts of these emissions on each state’s air quality are then 
quantified using receptor-oriented atmospheric sensitivities from the 
adjoint of the GEOS-Chem chemistry-transport model22 (see Methods).

We calculate the pollution exchange between every state pair for the 
contiguous US for every combination of emission sector, PM2.5 or ozone pre-
cursor emission species, and year. The 2011 source–receptor relations for 
the two pollutants and the total impacts are summarized in Fig. 1a. Matrices 
for different sectors and emission species are presented in Fig. 1b. Source–
receptor matrices for all three years are presented in Extended Data Fig. 2.

The relative percentage of total impacts that occurred outside of 
the emitting state decreased with time, from 53% in 2005, to 45% in 
2011 and 41% in 2018, meaning that there has been a declining relative 
magnitude of cross-state impacts. This fraction varies substantially 
between sectors. Electric power generation is the only sector that is 
regulated by the CSAPR, and has the highest out-of-state impacts as a 
fraction relative to in-state impacts: on average, approximately 70% of 
early deaths from this sector occur outside of the state that caused the 
emissions. However, with reductions in emissions from electric power 
generation, by 2018 there were 70% fewer out-of-state early deaths 
(approximately 13,000 fewer early deaths) by comparison with 2005. 
Road transportation, industry and commercial/residential emissions 
resulted in higher cross-state early deaths in 2018 than electric power 
generation (by 28%, 42% and 74% respectively), but are not regulated 
by the CSAPR at present. Although PM2.5 and ozone impacts can vary 
by +125% to −65% depending on the specific choice of concentration-
response function (see Methods), this disagreement does not affect 
the net pollution exchange between states and the impacts attribut-
able to each sector.

The results presented in Fig. 1a, b reflect both PM2.5- and ozone-attrib-
utable early deaths. Although the number of early deaths per additional 
unit of emission is approximately eight times higher for PM2.5 than for 
ozone (not accounting for nonlinear interactions; see Methods), ozone 
impacts are typically transported farther. The fraction of PM2.5 impacts 
that happen out of the state that caused them was approximately 41% 
for 2011, compared with approximately 75% for ozone for the same year. 
The full source–receptor matrices for each sector–year and species–
year combination are included in the data repository (see Methods).

The fact that the source–receptor matrices, presented in Fig. 1, are 
not symmetric about the diagonal implies that there is a net imbal-
ance in the exchange of early deaths between the US states. Figure 2 
presents this exchange in terms of the air-quality-related early deaths 
per capita because of emissions from each state (Fig. 2a) and occurring 
within each state (Fig. 2b), as well as the net exchange between states 
(Fig. 2c). A positive value in Fig. 2c indicates that a given state is a net 
‘exporter’ of early deaths—that is, that emissions in that state cause 
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Fig. 1 | Early-death source–receptor matrices for 2011. a, Source–receptor 
matrix showing total early deaths per year for 48 × 48 states (right), and its 
breakdown into PM2.5- and ozone-attributable impacts (left). b, Source–
receptor early-death attribution to emission sectors (top) and emission species 
(bottom) that lead to the formation of PM2.5 and/or ozone. States are grouped 
into US Bureau of Economic Analysis regions24 and ordered west (left) to east 

(right) (ordering presented in Extended Data Fig. 1). Boxed percentages 
represent the fraction of impacts that occur out of the state that caused the 
corresponding emissions. Obtaining the summarized matrices shown using 
conventional approaches (‘forward difference’) would require 433-year-long 
simulations. Extended Data Fig. 2 presents corresponding matrices for 2005 
and 2018.
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more early deaths outside of the state, than are caused within that state 
by emissions from elsewhere. A negative value indicates the opposite: 
that the state is a net importer of early deaths.

Three broad patterns are visible. First, the largest exporters are in 
the northern midwest, owing to low local populations, high emissions, 
and large downwind populations. Wyoming was the highest exporter 
on a per capita basis in 2005, with North Dakota and West Virginia fol-
lowing. While these states remained some of the largest per-capita 
exporters in 2018, their exported impacts fell by roughly 50% over this 
period (see the examples in Extended Data Table 2). Second, a cluster 
of states in the northeast are consistent net importers of impacts. New 
York was the highest net importer of early deaths in all three years, on 
both a per-capita and an absolute basis. For 2011, the approximately 
2,800 deaths incurred in New York because of New York emissions 
represent 60% of the total deaths caused by New York emissions, and 
approximately 40% of the total air-quality-attributable deaths in the 
state. This implies that around 60% of deaths in New York are imported 
from other states. Finally, states on the west coast have a net exchange of 
around 0, owing to a combination of no upwind emissions (attributable 
to any state), relatively sparse population downwind, and large local 
populations. We present examples of state-level sectoral contributions 
in Extended Data Figs. 3–5.

Figures 3a, b present the US-wide early-death impacts for each sec-
tor and each chemical species, respectively. Impacts from all sectors 
decrease over the studied period, with the exception of commercial/
residential and aviation (landing and take-off only). Impacts due to 
commercial/residential emissions increase by 31% between 2005 and 
2011, but remain steady (within approximately 5%) from 2011 to 2018. 
Aviation landing and take-off impacts increase by approximately 60% 
between 2005 and 2018, but contribute around 0.3% to the summed 
2018 impacts. Impacts from electric power generation reduce from 
22% of total summed impacts in 2005 to 11% in 2018. We estimate that 
reductions in emissions from electric power generation have led to 
around 15,900 avoided early deaths in 2018 and, interpolating lin-
early, to approximately 137,000 avoided early deaths integrated over 
the 14 years analysed here. Because of these changes, electric power 

generation changes from being the second most important emission 
sector to the fourth, while commercial/residential emissions go from 
fourth to first, responsible for 37% of the summed early deaths attribut-
able to combustion emissions in 2018.

In terms of speciated impacts—that is, emissions species that contrib-
ute to the formation of, and exposure to, PM2.5 and/or ozone—primary 
PM2.5 emissions had the greatest impact in all three model years. They 
also stayed relatively consistent, with a 13% reduction in health impacts 
from 2005 to 2018. SO2—which was the third-greatest contributor to 
impacts in 2005, making up 19% of the summed impacts—was con-
tributing less than 6% by 2018. This was due to an approximately 80% 
reduction in SO2 emissions.

Ammonia-attributable impacts increased by around 21% between 
2005 and 2018. This difference was driven by an increase in the sensi-
tivity of PM2.5 exposure with respect to a unit of ammonia emissions 
between 2005 and 2011. Owing to the decline in the importance of SO2, 
ammonia impacts went from being the fourth-greatest to the third-
greatest contributor to total impacts over this period, increasingly 
close to the contribution of NOx species. NOx remained the second-
greatest contributor to impacts from 2005 to 2018. Despite the roughly 
50% reduction in total NOx emissions between 2005 and 2018, impacts 
attributable to NOx reduced by only around 35% between the two years. 
This is largely due to the increased sensitivity of PM2.5 formation to NOx 
emissions between 2005 and 2011, as noted previously23.

On the basis of a linear combination of impacts by sector, we 
estimate US combustion emissions in 2005, 2011 and 2018 to have 
resulted in 111,200 (95% confidence interval 78,100–144,800), 93,700 
(65,600–121,800) and 76,500 (53,300–99,600) early deaths, respec-
tively. However, the total impact of all US anthropogenic emissions 
is different to the combined effect of each individual sector or spe-
cies, owing to nonlinear interactions between the emitted chemicals 
(Fig. 3c). These interactions reduce the total impacts attributable to 
PM2.5 by 30–34%. Impacts attributable to ozone instead increase by 
a factor of 2.4 to 2.8 (with the nonlinearity underlying this shown 
in Extended Data Fig. 6), raising the fraction of total early deaths 
attributable to ozone exposure from roughly 10% to around 30%. 
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Fig. 2 | Total annual early deaths caused per 10,000 people for 2005, 2011 
and 2018. The left plots (a) show the total aggregate early deaths caused by 
emissions in each state, divided by the population of the emitting state. The 
middle plots (b) show the total early deaths caused in each state, divided by the 

population of the state. The right plots (c) show the total early deaths exported 
by each state, divided by the population of the state (that is, the difference 
between plots a and b). These impacts are based on summed contributions 
from each emitted species (see Fig. 3).
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Taking these nonlinearity effects into account results in total US 
combustion emissions impacts of 96,600 (95% confidence interval 
74,200–125,000), 83,300 (62,400–104,200) and 66,100 (49,300–
82,900) early deaths for 2005, 2011 and 2018, respectively. This effect 
highlights the difference in expected changes in population exposure 
that result from marginal changes by comparison with larger-scale 
emissions increases or reductions. An explanation of this effect and 
its quantification is given in the Methods. The atmospheric nonlinear-
ity is also reflected in our computed sensitivity differences between 
2005 and 2011. Thus, a 1% reduction in 2011 emissions would lead to 
roughly 940 avoided early deaths. Had the atmospheric response 
to a unit of emissions remained constant between 2005 and 2011 (in 
terms of meteorology and background concentrations), the same 
emissions reduction would have led to around 780 avoided early 
deaths. The changing atmospheric composition thus increases the 
early deaths attributable to a unit of emission. These three effects 
are displayed in Fig. 3c.

Overall, we have found that more than 40% of the combustion-emis-
sions-related early deaths cross state lines. This highlights the need for 
a cooperative approach between states for reaching air-quality targets 
or targeting problematic areas, as underlined by the introduction of 
EPA’s CSAPR5. We find that the electric power generation sector is of 

declining importance to air quality, by comparison with the increas-
ing importance of commercial/residential emissions. A 10% decrease 
in emissions from the commercial/residential sector would have 3.3 
times greater benefit than a further 10% decrease in emissions from 
electric power generation. This is reflected in the declining relative 
importance of SO2, and the increasing relative importance of primary 
PM2.5 and ammonia. A 10% decrease in primary PM2.5, NOx and ammonia 
emissions would now have 7, 4.5 and 4 times the benefit, respectively, 
compared with a further 10% decrease in SO2 emissions. These chang-
ing relative sectoral and speciated influences provide room to advance 
air-quality mitigation efforts in the US.
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maries, source data, extended data, supplementary information, 
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Fig. 3 | Total annual early deaths attributable to emission sector, emission 
species and in total. a, Total annual early deaths attributable to each emission 
sector. b, Total annual early deaths attributable to each emission species that 
leads to the formation of PM2.5 and/or ozone. c, Total annual early deaths. Data 
are shown for 2005, 2011 and 2018, and for PM2.5 and ozone. In c, three totals are 

presented: the sum of all sectors/species (‘Summed’), which does not account 
for nonlinear interactions between species; the sum of all sectors/species with 
varying emissions, but constant (2005) atmosphere (‘Constant atmospheric 
response’); and the total impacts after accounting for nonlinear interactions 
between species. Tabulated results are presented in Extended Data Table 3.
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Methods

We present here the data and models used in calculating the cross-state 
early-deaths caused by combustion emissions. We first estimate the spe-
ciated emissions for each combustion sector. We then use the adjoint 
of a chemistry-transport model to estimate the impact of changes 
in emissions on population exposure. Finally, we relate increases in 
population exposure to public health impacts (early deaths) using 
epidemiologically derived concentration-response functions. These 
steps, intercomparison of our results against existing literature, and 
the limitations of our approach are outlined below.

Combustion emissions
Emissions are attributed to each of the six nonaviation sectors in the 
US using SMOKE and the EPA National Emissions Inventory (NEI) for the 
year of 2005 (previously used in ref. 13), 2011 (NEI2011v6 version 1) and 
the 2011-based forecast for 2018 (refs. 25–27). These are generated on a 
12 km × 12 km or 36 km × 36 km grid, and regridded to the 0.5° × 0.666° 
(latitude × longitude) grid of the nested GEOS-Chem adjoint model. 
The full list of individual sources (and corresponding EPA source 
classification code (SCC) identifiers) that comprise each sector are 
provided in the data repository noted in the Methods section ‘Data 
and code availability’. For road transportation for 2011 and 2018, we 
use the EPA MOtor Vehicle Emissions Simulator (MOVES)-processed 
emissions28. For aviation emissions we use the Aviation Environmen-
tal Design Tool (AEDT) inventories for 2006, 2010, 2012 and 2015  
(ref. 29). When referring to each of 2005, 2011 and 2018 aviation impacts, 
we imply impacts from 2006, the average of 2010 and 2012, and 2015 
emissions respectively, owing to the absence of more recent datasets. 
Only aviation emissions that occur within 1 km of the surface (landing 
and take-off emissions) are taken into account. These have been shown 
to capture roughly one-third of total aviation-emissions-attributable 
early deaths in the US30,31. We account for the underrepresentation of 
EPA’s point-source oil and gas sector (pt_oilgas) in NEI2011v6 version 1, 
by distributing the underrepresented NOx (the difference in pt_oilgas 
NOx between version 3 and version 1) to the industry sector NOx emis-
sions on a state level, assuming the existing spatial distribution27. When 
calculating state source–receptor matrices for the marine sector, we 
only consider marine emissions within state boundaries and within, on 
average, around 25 km off the coast over the sea (where applicable). 
Besides the marine sector, which does not necessarily fall within state 
boundaries, we do not account for the impacts of emissions that occur 
outside of this domain and might contribute to US early deaths. Further 
details on emissions modelling are provided in the data repository.

Air-quality modelling
We use the adjoint of the GEOS-Chem chemistry-transport model22 to 
calculate the sensitivities of the aggregate population exposure in each 
of the 48 contiguous US states with respect to the various emission spe-
cies in the North American domain. The resolution of the horizontal grid 
is 0.5° × 0.666° (roughly 55 km × 55 km) (latitude × longitude), with 47 
vertical layers up to 80 km. This horizontal resolution is adequate for 
capturing state-wide impacts32–34. Boundary conditions for the nested 
domain are obtained from the global GEOS-Chem model run at 4° × 5° 
resolution, driven by corresponding global meteorological data. Each 
of the 48 sensitivities quantifies the effect that any emission species 
in any location in the contiguous US and at any time will have on the 
population exposure to PM2.5 or ozone in each corresponding state. 
We define PM2.5 as the mass sum of nitrates, sulfates, ammonium, black 
carbon and organic carbon, capturing both primary and secondary 
PM2.5 concentrations. Secondary organic aerosols are not captured. We 
perform an annual simulation for each of PM2.5 and ozone state-level 
exposure, in each contiguous US state, for 2006 and 2011, resulting in 
192 annual adjoint simulations in total (48 × 2 × 2). We use GEOS assimi-
lated meteorological data from the Global Modelling and Assimilation 

Office (GMAO) at the NASA Goddard Space Flight Center. The year 
2006 was climatologically warm in the US, with the annual average 
temperature being 0.55 °C higher than the 1995–2015 mean, whereas 
2011 was climatologically average with an average temperature 0.04 °C 
lower than the 1995–2015 mean35. For 2018 we use the 2011 atmospheric 
response. Given the change between 2005 and 2011 (comparing the 
‘Summed’ and ‘Constant atmospheric response’ in Fig. 3), we expect 
that this approximation will result in a maximum error of around 15% 
(as there were larger emissions changes between 2005 and 2011 than 
between 2011 and 2018). Total impacts across all sectors are calculated 
using additional ‘forward’ runs, described at the end of this section.

The GEOS-Chem baseline emissions are from EPA’s NEI for 2005 and 
2011 accordingly26,27. Previous studies have found that the NEI 2011 road 
transportation NOx emissions are overestimated by around 50% in the 
southeast and nationally36,37. The effects of this are not included here 
as they are, as of the time of writing, not incorporated in EPA’s NEI. An 
overestimation of 50% in the road transportation NOx emissions in 2011 
implies that results presented here overestimate road transportation 
early deaths by around 7,500 (95% confidence interval 5,200–9,700) 
early deaths per year. Other emissions sources, both natural and anthro-
pogenic, are simulated using the standard GEOS-Chem nested North 
American domain datasets. The Electronic Data Gathering, Analysis and 
Retrieval (EDGAR) global anthropogenic emissions inventory drives 
the global model (from which the boundary conditions for the nested 
simulations are generated)38. This is replaced by regional emissions 
inventories where available (for example, NEI). Biogenic emissions 
are from the Model of Emissions of Gases and Aerosols from Nature 
(MEGAN) inventory39, and lighting NOx emissions are calculated on 
the basis of ref. 40.

We estimate the impacts of each sector by performing an inner 
(Hadamard) product of the sensitivities with the gridded emissions 
for each of the seven sectors, and calculate the corresponding popula-
tion exposure impacts. This linear approach was used and validated in  
refs. 19,20,41–43 against the forward model difference method.

When calculating the total impacts from all sectors combined, we 
use a different approach to take into account nonlinear interactions 
between the sectors. Total impacts are calculated by comparing the 
surface concentrations in forward GEOS-Chem simulations with and 
without all US anthropogenic emissions. These forward model simula-
tions allow us to quantify nonlinearity in the response of US air quality. 
Sets of seven forward simulations are conducted for both 2005 and 2011 
to quantify this nonlinearity. Extended Data Fig. 6 shows how the simu-
lated, population-weighted concentrations of ozone and PM2.5 respond 
to large changes in emissions (‘Average sensitivity’). Compared with the 
sensitivities used for single-sector and speciated impact calculations 
(‘Marginal sensitivity’), the full, nonlinear PM2.5 response to removal of 
all emissions is found to be 30–34% smaller, while the ozone response is 
found to be 2.4–2.8 times greater, implying greater nonlinearity effects 
for ozone by comparison with PM2.5. This is because ozone sensitivities 
are larger when ozone concentrations are low, owing to the greater 
ozone-production efficiencies in a clean background atmosphere44. 
For PM2.5, the response nonlinearity is driven by competition between 
SO4 (from emitted SO2) and NO3 (from emitted NOx) for ammonia23,45.

Total impacts for 2018 are estimated by scaling the 2011 response. 
The scaling factor is calculated as the total growth in US population, 
multiplied by the ratio of the linearized response to 2018 and 2011 
emissions.

Health impacts
We quantify air-quality impacts in terms of early deaths (premature 
mortalities). The toxicity of different PM2.5 species is assumed to be 
equal, consistent with EPA practice. As with any study of air pollu-
tion impacts, our results are sensitive to the specific choice of con-
centration–response function (CRF). To calculate the effects of PM2.5 
exposure, we apply the American Cancer Society (ACS) cohort study 



log-linear response estimate of 6% (range 4–8%) increased risk of all-
cause mortality per 10 μg m−3 increase in annually averaged PM2.5 expo-
sure, derived for 1999–2000 exposures using the random-effects Cox 
model, and adjusted for 44 individual-level and 7 ecological covariates7. 
This estimate is linearized and applied here for adults over the age of 
30 years old. This CRF has been applied in a number of estimates of 
US pollution impacts46–48; it is consistent with the results of a global 
meta-analysis of epidemiological literature, which also found a 6% 
(range 4–8%) increase in risk per 10 μg m−3 (ref. 9).

Using a different risk estimate would result in a change in the total 
estimated impact. An expert elicitation performed by the EPA indicated 
a 1% (range 0.4–1.8%) increase in all-cause mortalities per 1 μg m−3 of 
exposure2. This would imply a roughly 70% increase in calculated early 
deaths, although all relative comparisons would remain the same. 
Another alternative based on the US medicare cohort would imply 
a roughly 18% increase in the calculated early deaths for PM2.5, when 
applied to the same 30-plus population (again with all relative com-
parisons staying the same, but with the caveat that this was derived in 
a 65-plus cohort)49. Extended Data Table 4 shows how the estimate of 
total impacts, accounting for nonlinearity of the atmospheric response, 
is affected by the estimated relative risk, including the previously cited 
studies2,7,12, refs. 49–51 and the results of a meta-analysis of epidemio-
logical literature9. Although we cannot directly apply a nonlinear CRF, 
using the mean 2011 US concentration of PM2.5 in the global exposure 
mortality model (GEMM)12, we estimate a 35% increase in calculated 
early deaths.

For ozone, we apply the respiratory disease mortality CRF of  
ref. 52; this is based on US exposure data from the same ACS study 
as above7. Impacts are calculated using the 8-hour maximum daily 
average ozone over the entire year, and applied to the same popu-
lation. However, as with PM2.5, there is disagreement regarding the 
correct exposure response curve to use. Extended Data Table 4 also 
includes estimates of ozone impacts, accounting for nonlinearity of 
the atmospheric response, using different ozone exposure response 
curves from the literature50,52,53. Using the all-cause mortality CRF of 
ref. 52 would result in a 110% increase in total mortality due to ozone 
exposure. Applying the all-cause mortality CRF of ref. 50 to quantify 
ozone health impacts would instead result in a roughly 17% increase 
in the reported early deaths due to ozone exposure. We note that the 
CRF of ref. 50 is based on mean summertime ozone exposure, whereas 
we measure annual-average exposure to 8-hour maximum ozone. 
However, ref. 52 showed that the response of respiratory mortality 
to chronic ozone exposure is similar when using either annual aver-
age (12% increase per 10 ppbv) or warm season (10% per 10 ppbv) 
exposure.

Population data are obtained from the global rural urban mapping 
project (GRUMP)54 and LandScan55 databases. For 2018, we scale the 
2011 population to match the 2017 US Census totals56. State popu-
lation fractions over the age of 30 years old are obtained from the 
US Census Bureau for 2011 (ref. 57). The US baseline all-cause and res-
piratory disease incidence rates are obtained from the WHO for 2012  
(ref. 58). For both PM2.5 and ozone, the early-deaths confidence intervals 
reflect the reported uncertainty range for the CRF. Uncertainty in the 
summed PM2.5 and ozone impacts is calculated by performing a Monte 
Carlo simulation with 106 independent draws of each CRF, applying a 
triangular distribution to both.

Intercomparison with other studies
Pollution exchange on an intercontinental scale has previously been 
estimated for ozone59–61, PM2.5 (refs. 62–65), and both66, highlighting the 
influence of emissions from cross-continental sources. Regional stud-
ies have focused on individual species or species and pollutants—for 
example, the NOx to ozone effect between EU countries67 and between 
US states17, sources of black-carbon impacts in parts of the US16, and 
fine-scale monetized US PM2.5 impacts of different sectors6, in addition 

to other studies not using detailed chemistry-transport model (CTM) 
approaches.

The main contribution of our work is the breakdown of both air-
pollution causes and impacts in the US, and there are no studies to 
which direct comparisons at the level of disaggregation in our work 
can be made. However, the aggregate results of this study compare 
well with those in the existing literature. Ref. 68 reports a roughly 25% 
decrease in PM2.5-attributable early deaths in the US between 2005 
and 2014, which is similar to the roughly 22% found here (interpolating 
for these two years). Our estimated total early deaths fall within the 
uncertainty ranges of recent studies, for example, the 79,300 (95% 
confidence interval 39,700–113,000) non-agriculture-related 2015 
US early deaths reported in ref. 69; the 88,400 (66,800–115,000) 2015 
US PM2.5-attributable early deaths reported in ref. 70; and the central 
estimate of 107,000 total 2011 US PM2.5-attributable deaths (of which 
around 85,600 correspond to non-agriculture- and non-fire-related 
deaths) reported in ref. 6. As in these studies, our 2011 estimates are 
higher than the 2010 estimates of ref. 4 (around 37,400 US early deaths 
for non-natural and non-agriculture-related deaths). In addition, 
refs. 4,69 report different sectoral attributions, probably owing to the 
different emissions inventory used (EDGAR versus NEI). Our secto-
ral and speciated relative attribution is similar (for 2005) to that of  
ref. 19 (with the absolute values being different because of the different 
health-impacts function applied).

We also compare our estimated changes in population exposure 
to data obtained from monitor sites. We find that, between 2005 and 
2011, the simulated population exposure to PM2.5 and ozone (taking 
into account nonlinearities) fell by roughly 20% and 8.6% respectively. 
For the same two years, EPA’s annual trends from nationwide monitor 
sites show a decrease of 24% and 8% for PM2.5 and ozone concentrations 
respectively71.

Limitations
In terms of air-quality modelling, even though the 0.5° × 0.666° (roughly 
55 km × 55 km) (latitude × longitude) resolution is sufficient for cap-
turing state-level regional impacts, it may underestimate primary 
PM2.5 impacts and misrepresent ozone impacts in densely populated 
urban areas. This is in part due to the instantaneous dilution of the 
emissions, and, for ozone, to the highly nonlinear relationship between 
ozone formation and background VOC and NOx concentrations. The 
EPA NEIs that are used here, and in policy assessments, are also only 
an approximation, with some known issues that we do not explicitly 
account for36,37. This could affect both the baseline calculation of the 
sensitivity and the absolute impacts attribution. In addition, the emis-
sions presented for 2018 are forecasted from the NEI2011 inventory. 
Such forecasts are inherently uncertain72–74. Finally, previous studies 
have shown a tendency for GEOS-Chem simulations to overestimate 
nitrates75,76. This may result in artificially increased PM2.5 formation in 
response to combustion emissions.

In estimating health impacts, the choice of CRF is critical for early-
death calculations. Here we apply the all-cause CRF for PM2.5 from the 
ACS cohort study7 because of the large and nationally representative 
cohort it is based on, and because of its wide application in PM2.5-
attributable health-impact estimates in the literature. This CRF was 
derived for pre-2000 concentrations, and we thus assume no hetero-
geneity in effect estimates over time (as concentrations change). An 
analysis of the level of disagreement between different CRFs, and the 
effect on our estimated impacts, is presented in the ‘Health impacts’ 
section above.

We assume equal toxicity between different PM2.5 species, consist-
ent with EPA’s practice. However, epidemiological work on differen-
tial toxicity has provided estimates for mortality predictors based on 
exposure to individual PM2.5 constituents77. Sulfates and black carbon 
have specifically been highlighted because of their suspected higher 
toxicity amongst PM2.5 constituents9,78.



Article
Here we choose to quantify all-cause and respiratory-disease mortal-

ity for long-term exposure to PM2.5 and ozone respectively, but note that 
human exposure to PM2.5 and ozone has been correlated with a variety 
of specific health endpoints, such as neurological diseases79, various 
forms of cancer80, low birth weight81, and others. Short-term exposure 
to PM2.5 and ozone has also been found to correlate causally with an 
increased likelihood of early death82,83, and is not included here. Nonfa-
tal (morbidity) effects attributable to PM2.5 and ozone exposure—includ-
ing acute respiratory symptoms, exacerbated asthma, days of work 
and school lost, upper and lower respiratory symptoms, nonfatal heart 
attacks, acute bronchitis, and hospital and emergency-department 
visits—are also not captured. In addition, given the aggregate nature 
of the adjoint objective function, we present results for the aggregate 
state-level population. Air-pollution-related health impacts, however, 
have been known to disproportionally affect different races, ages and 
socioeconomic backgrounds84,85. These are not broken down here.

We also note that this work quantifies the pollution exchange 
between the contiguous US states, and does not take into account 
sources outside of this domain (for example, Mexico, Canada and inter-
continentally65,86). In addition, while changes in emissions are probably 
the largest driver of changes in the cross-state, sectoral and speciated 
patterns between the years, effects of meteorological changes can 
also contribute, and are not specifically decoupled here. Finally, for 
simultaneous, large changes in multiple pollutant emissions, there may 
be nonlinear interactions. These interactions could change the total 
impact relative to that calculated for individual sectors here, where 
independent changes are assumed. For this reason, and as discussed 
above, we calculate and present total impacts (aggregated across all 
sectors) using forward simulations in which all emissions are reduced 
simultaneously.

Data availability
The cross-state source–receptor matrices generated and analysed here, 
together with sector definitions, are available in the 4TU.ResearchData 
repository at https://doi.org/10.4121/uuid:edfc5304-39ed-4556-a95a-
f8b3313f7cfc.

Code availability
The atmospheric modelling code used is publicly available; instructions 
for download are given at http://wiki.seas.harvard.edu/geos-chem/
index.php/GEOS-Chem_Adjoint.
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Extended Data Fig. 1 | Source–receptor matrix showing total impacts in 2011 for the contiguous US. ‘By each state’ indicates sources; ‘in each state’ indicates 
receptors. The matrix is annotated with state abbreviations and their regional grouping.



Extended Data Fig. 2 | Annual early-death source–receptor matrices for 
2005, 2011 and 2018 for the contiguous US. Each matrix comprises 48 × 48 
states. a (i), The total source–receptor matrix for 2011. a (ii), Its breakdown to 
PM2.5-attributable and ozone-attributable impacts for all three years.  
b, Source–receptor early-death attribution to emission sectors (i) and emission 
species that lead to the formation of PM2.5 and/or ozone (ii). States are grouped 
in regions defined by the Bureau of Economic Analysis20 (labelled in a) and 

ordered from west (left) to east (right). The ordering of individual states is 
presented in Extended Data Fig. 1. Boxed percentages represent the fraction of 
impacts that occur out of the state that caused the corresponding emissions. 
We note that to obtain these summarized source–receptor matrices using 
conventional modelling approaches (‘forward difference simulations’) would 
have required around 1,300 simulations.
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Extended Data Fig. 3 | Origins of New York annual early deaths, for 2005, 
2011 and 2018, for five sectors and in total. Each state is coloured according to 
the annual early deaths that emissions from that state cause in the state of New 

York, for each sector–year combination. The total early deaths occurring in 
New York (that is, the sum of all states’ values) for each sector–year 
combination is displayed at the bottom left of each panel.



Extended Data Fig. 4 | Origins of North Carolina annual early deaths, for 
2005, 2011 and 2018, for five sectors and in total. Each state is coloured 
according to the annual early deaths that emissions from that state cause in the 

state of North Carolina, for each sector–year combination. The total early 
deaths occurring in North Carolina (the sum of all states’ values) for each 
sector–year combination is displayed at the bottom left of each panel.
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Extended Data Fig. 5 | Receptors of annual early deaths due to emissions in 
Indiana for 2005, 2011 and 2018, for five sectors and in total. Each state is 
coloured according to the annual early deaths that occur in that state because 

of emissions in Indiana, for each sector–year combination. The total early 
deaths caused by Indiana emissions (that is, the sum of all states’ values) for 
each sector–year combination is displayed at the bottom left of each panel.



Extended Data Fig. 6 | Changes in the response of surface-population-
weighted PM2.5 and ozone concentrations to US emissions. Data points show 
the results of a series of forward simulations, in which the input conditions of 
the simulation (the total US anthropogenic emissions of all species) are 
reduced, joined by a cubic spline fit. The ‘average sensitivity’ lines indicate the 
gradient implied when impacts due to all sectors combined are calculated—
that is, when the effects of atmospheric nonlinearity are taken into account—

and thus the total results are scaled to match this. The ‘marginal sensitivity’ 
lines indicate the gradient of the response obtained by our GEOS-Chem adjoint 
simulation, and are used for calculations of individual sector and species 
impacts (where individual perturbations are of smaller size). The difference 
between the zero intercept of the two lines constitutes the ‘interaction’ effect. 
All values are population-weighted means for 2011.
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Extended Data Table 1 | Primary PM2.5, NOx and SOx emissions totals for 2005, 2011 and 2018

Emissions expressed in teragrams per year for each sector for 2005, 2011 and 2018. Emissions for all sectors apart from aviation are derived from EPA’s NEI. Aviation emissions are taken from 
the AEDT inventory29 (for years 2006, 2010/2012 and 2015) and include emissions that occurred over the contiguous US. The percentages of aviation emissions that occur within around 1 km of 
altitude (landing and take-off emissions) are given in parentheses, and are the aviations emissions included in our analysis.



Extended Data Table 2 | Five states with the greatest reduction in annual early deaths between 2005 and 2018

Data are given in terms of early deaths caused by emissions from each state and in each state. Values in square brackets show 95% confidence intervals.
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Extended Data Table 3 | Early deaths attributable to each sector and species (that lead to PM2.5 and/or ozone formation) for 
2005, 2011 and 2018

Values in square brackets are 95% confidence intervals. Only the mean effect is reported for the nonlinear interaction terms.



Extended Data Table 4 | Alternative CRF application to 2011 early deaths for all sectors, for PM2.5 and ozone

Pollutant Study Mortality end-points Early deaths 
PM2.5 Ref. 7 All-cause 55,200 

[36,800-73,600] 

Ref. 2 All-cause 94,300 
[37,700-169,700] 

Ref. 50 All-cause 66,800 
[64,900-68,600] 

Ref. 9 All-cause 55,200 
[36,800-73,600] 

Ref. 49 All-cause 124,200 
[62,100-195,100] 

Ref. 51 All-cause 55,200 
[9,200-101,200] 

Ref. 12 NCD+LRI*  75,000 
[65,500-85,300]** 

Ref. 7 Cardiopulmonary 38,600 
[29,700-48,200] 

Ref. 9 Cardiovascular 31,200 
[14,200-45,400] 

Ref. 49 Cardiovascular 69,100 
[37,200-106,300] 

Ref. 51 Cardiovascular 87,500 
[54,000-123,500] 

Ozone*** Ref. 52 Respiratory 
(MDA8, annual avg.) 

28,100 
[18,700-37,400] 

Ref. 52 All-cause 
(MDA8, annual avg.) 

59,500 
[29,800-119,100] 

Ref. 50 All-cause 
(24-hr avg. warm season) 

32,900 
[29,900-35,900] 

Ref. 53 Respiratory 
(MDA1, warm season) 

9,700 
[2,400-16,300] 

Atmospheric nonlinearity is taken into account. The CRFs used to calculate the estimates in the main text are shown in italics. As in the main text, we apply these to the 30-plus population, using 
corresponding data for disease-specific baseline incidence rates from the WHO for 2012. Uncertainty intervals (in square brackets) reflect the 95% confidence intervals for each CRF. 
*The GEMM model health end-point is all nonaccidental deaths, almost all of which are due to noncommunicable diseases (NCDs) and lower respiratory infections (LRIs). We use the all-cause 
mortality incidence rate from the WHO, excluding all injury-related deaths. 
**To estimate the early deaths from the GEMM model, we use the parameters provided in ref.12 for more than >25 years, excluding the Chinese male cohort study, and use the mean population-
weighted concentration of PM2.5 in the US to determine the local relative risk per unit increase in exposure. The uncertainty intervals here reflect one standard error in parameter θ of the model. 
***Note that the different CRF studies compared here assume different measures of ozone exposure (annual mean 8-hour maximum in ref. 52; warm-season (April–September) mean in ref. 50; and 
warm-season 1-hour daily maximum in ref. 53). We apply all of these using the annual mean 8-hour maximum ozone exposure. MDA8, maximum daily 8-hour average.
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